337 research outputs found

    Large-scale use of mosquito larval source management for malaria control in Africa: a cost analysis.

    Get PDF
    UNLABELLED: ABSTRACT: BACKGROUND: At present, large-scale use of two malaria vector control methods, long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) is being scaled up in Africa with substantial funding from donors. A third vector control method, larval source management (LSM), has been historically very successful and is today widely used for mosquito control globally, except in Africa. With increasing risk of insecticide resistance and a shift to more exophilic vectors, LSM is now under re-evaluation for use against afro-tropical vector species. Here the costs of this intervention were evaluated. METHODS: The 'ingredients approach' was used to estimate the economic and financial costs per person protected per year (pppy) for large-scale LSM using microbial larvicides in three ecologically diverse settings: (1) the coastal metropolitan area of Dar es Salaam in Tanzania, (2) a highly populated Kenyan highland area (Vihiga District), and (3) a lakeside setting in rural western Kenya (Mbita Division). Two scenarios were examined to investigate the cost implications of using alternative product formulations. Sensitivity analyses on product prices were carried out. RESULTS: The results show that for programmes using the same granular formulation larviciding costs the least pppy in Dar es Salaam (US0.94),approximately600.94), approximately 60% more in Vihiga District (US1.50) and the most in Mbita Division (US2.50).However,thesecostsarereducedsubstantiallyifanalternativewaterdispensableformulationisused;inVihiga,thiswouldreducecoststoUS2.50). However, these costs are reduced substantially if an alternative water-dispensable formulation is used; in Vihiga, this would reduce costs to US0.79 and, in Mbita Division, to US$1.94. Larvicide and staff salary costs each accounted for approximately a third of the total economic costs per year. The cost pppy depends mainly on: (1) the type of formulation required for treating different aquatic habitats, (2) the human population density relative to the density of aquatic habitats and (3) the potential to target the intervention in space and/or time. CONCLUSION: Costs for LSM compare favourably with costs for IRS and LLINs, especially in areas with moderate and focal malaria transmission where mosquito larval habitats are accessible and well defined. LSM presents an attractive tool to be integrated in ongoing malaria control effort in such settings. Further data on the epidemiological health impact of larviciding is required to establish cost effectiveness

    Larval source management for malaria control in Africa: myths and reality

    Get PDF
    As malaria declines in many African countries there is a growing realization that new interventions need to be added to the front-line vector control tools of long-lasting impregnated nets (LLINs) and indoor residual spraying (IRS) that target adult mosquitoes indoors. Larval source management (LSM) provides the dual benefits of not only reducing numbers of house-entering mosquitoes, but, importantly, also those that bite outdoors. Large-scale LSM was a highly effective method of malaria control in the first half of the twentieth century, but was largely disbanded in favour of IRS with DDT. Today LSM continues to be used in large-scale mosquito abatement programmes in North America and Europe, but has only recently been tested in a few trials of malaria control in contemporary Africa. The results from these trials show that hand-application of larvicides can reduce transmission by 70-90% in settings where mosquito larval habitats are defined but is largely ineffectual where habitats are so extensive that not all of them can be covered on foot, such as areas that experience substantial flooding. Importantly recent evidence shows that LSM can be an effective method of malaria control, especially when combined with LLINs. Nevertheless, there are a number of misconceptions or even myths that hamper the advocacy for LSM by leading international institutions and the uptake of LSM by Malaria Control Programmes. Many argue that LSM is not feasible in Africa due to the high number of small and temporary larval habitats for Anopheles gambiae that are difficult to find and treat promptly. Reference is often made to the Ross-Macdonald model to reinforce the view that larval control is ineffective. This paper challenges the notion that LSM cannot be successfully used for malaria control in African transmission settings by highlighting historical and recent successes, discussing its potential in an integrated vector management approach working towards malaria elimination and critically reviewing the most common arguments that are used against the adoption of LSM

    Aquatain® Mosquito Formulation (AMF) for the control of immature Anopheles Gambaie sensu stricto and Anopheles arabiensis : dose-responses, persistence and sub-lethal effect

    Get PDF
    Background: Persistent monomolecular surface films could benefit larval source management for malaria control by reducing programme costs and managing insecticide resistance. This study evaluated the efficacy of the silicone-based surface film, Aquatain® Mosquito Formulation (AMF), for the control of the Afrotropical malaria vectors, Anopheles gambiae sensu stricto and Anopheles arabiensis in laboratory dose–response assays and standardized field tests. Methods: Tests were carried out following guidelines made by the World Health Organization Pesticide Evaluation Scheme (WHOPES). Sub-lethal effects of AMF were evaluated by measuring egg-laying and hatching of eggs laid by female An. gambiae s.s. that emerged from habitats treated with a dose that resulted in 50% larval mortality in laboratory tests. Results: Both vector species were highly susceptible to AMF. The estimated lethal doses to cause complete larval mortality in dose–response tests in the laboratory were 1.23 (95% confidence interval (CI) 0.99-1.59) ml/m2 for An. gambiae s.s. and 1.35 (95% CI 1.09-1.75) ml/m2 for An. arabiensis. Standardized field tests showed that a single dose of AMF at 1 ml/m2 inhibited emergence by 85% (95% CI 82-88%) for six weeks. Females exposed as larvae to a sub-lethal dose of AMF were 2.2 times less likely (Odds ratio (OR) 0.45, 95% CI 0.26-0.78) to lay eggs compared to those from untreated ponds. However, exposure to sub-lethal doses neither affected the number of eggs laid by females nor the proportion hatching. Conclusion: AMF provided high levels of larval control for a minimum of six weeks, with sub-lethal doses reducing the ability of female mosquitoes to lay eggs. The application of AMF provides a promising novel strategy for larval control interventions against malaria vectors in Africa. Further field studies in different eco-epidemiological settings are justified to determine the persistence of AMF film for mosquito vector control and its potential for inclusion in integrated vector management programmes

    Achieving high coverage of larval-stage mosquito surveillance: challenges for a community-based mosquito control programme in urban Dar es Salaam, Tanzania

    Get PDF
    Background: Preventing malaria by controlling mosquitoes in their larval stages requires regular sensitive monitoring of vector populations and intervention coverage. The study assessed the effectiveness of operational, community-based larval habitat surveillance systems within the Urban Malaria Control Programme (UMCP) in urban Dar es Salaam, Tanzania. Methods: Cross-sectional surveys were carried out to assess the ability of community-owned resource persons (CORPs) to detect mosquito breeding sites and larvae in areas with and without larviciding. Potential environmental and programmatic determinants of habitat detection coverage and detection sensitivity of mosquito larvae were recorded during guided walks with 64 different CORPs to assess the accuracy of data each had collected the previous day. Results: CORPs reported the presence of 66.2% of all aquatic habitats (1,963/2,965), but only detected Anopheles larvae in 12.6% (29/230) of habitats that contained them. Detection sensitivity was particularly low for late-stage Anopheles (2.7%, 3/111), the most direct programmatic indicator of malaria vector productivity. Whether a CORP found a wet habitat or not was associated with his/her unfamiliarity with the area (Odds Ratio (OR) [95% confidence interval (CI)] = 0.16 [0.130, 0.203], P < 0.001), the habitat type (P < 0.001) or a fence around the compound (OR [95% CI] = 0.50 [0.386, 0.646], P < 0.001). The majority of mosquito larvae (Anophelines 57.8% (133/230) and Culicines 55.9% (461/825) were not reported because their habitats were not found. The only factor affecting detection of Anopheline larvae in habitats that were reported by CORPs was larviciding, which reduced sensitivity (OR [95% CI] = 0.37 [0.142, 0.965], P = 0.042). Conclusions: Accessibility of habitats in urban settings presents a major challenge because the majority of compounds are fenced for security reasons. Furthermore, CORPs under-reported larvae especially where larvicides were applied. This UMCP system for larval surveillance in cities must be urgently revised to improve access to enclosed compounds and the sensitivity with which habitats are searched for larvae

    Evaluation of the influence of electric nets on the behaviour of oviposition site seeking Anopheles gambaie s.s

    Get PDF
    Background: Electric nets (e-nets) are used to analyse the flight behaviour of insects and have been used extensively to study the host-oriented flight of tsetse flies. Recently we adapted this tool to analyse the oviposition behaviour of gravid malaria vectors, Anopheles gambiae s.s., orienting towards aquatic habitats and traps by surrounding an artificial pond with e-nets and collecting electrocuted mosquitoes on sticky boards on the ground next to the nets. Here we study whether e-nets themselves affect the responses of gravid An. gambiae s.s.. Methods: Dual-choice experiments were carried out in 80 m2 screened semi-field systems where 200 gravid An. gambiae s.s. were released each night for 12 nights per experiment. The numbers of mosquito landing on or approaching an oviposition site were studied by adding detergent to the water in an artificial pond or surrounding the pond with a square of e-nets. We also assessed whether the supporting framework of the nets or the sticky boards used to retain electrocuted mosquitoes influenced the catch. Results: Two similar detergent treated ponds presented in choice tests caught an equal proportion of the mosquitoes released, whereas a pond surrounded by e-nets caught a higher proportion than an open pond (odds ratio (OR) 1.7, 95% confidence interval (CI) 1.1 - 2.7; p < 0.017). The separate evaluation of the impact of the square of electric nets and the yellow boards on the approach of gravid females towards a pond suggests that the tower-like construction of the square of electric nets did not restrict the approach of females but the yellow sticky boards on the ground attract gravid females to a source of water (OR 2.7 95% CI 1.7 – 4.3; p < 0.001). Conclusion: The trapping efficiency of the electric nets is increased when large yellow sticky boards are placed on the ground next to the e-nets to collect electrocuted mosquitoes, possibly because of increased visual contrast to the aquatic habitat. It is therefore important when comparing two treatments that the same trapping device is used in both. The importance of contrast around artificial habitats might be exploited to improve collections of An. gambiae s.s. in gravid traps

    Impact of Community-Based Larviciding on the Prevalence of Malaria Infection in Dar es Salaam, Tanzania.

    Get PDF
    The use of larval source management is not prioritized by contemporary malaria control programs in sub-Saharan Africa despite historical success. Larviciding, in particular, could be effective in urban areas where transmission is focal and accessibility to Anopheles breeding habitats is generally easier than in rural settings. The objective of this study is to assess the effectiveness of a community-based microbial larviciding intervention to reduce the prevalence of malaria infection in Dar es Salaam, United Republic of Tanzania. Larviciding was implemented in 3 out of 15 targeted wards of Dar es Salaam in 2006 after two years of baseline data collection. This intervention was subsequently scaled up to 9 wards a year later, and to all 15 targeted wards in 2008. Continuous randomized cluster sampling of malaria prevalence and socio-demographic characteristics was carried out during 6 survey rounds (2004-2008), which included both cross-sectional and longitudinal data (N = 64,537). Bayesian random effects logistic regression models were used to quantify the effect of the intervention on malaria prevalence at the individual level. Effect size estimates suggest a significant protective effect of the larviciding intervention. After adjustment for confounders, the odds of individuals living in areas treated with larviciding being infected with malaria were 21% lower (Odds Ratio = 0.79; 95% Credible Intervals: 0.66-0.93) than those who lived in areas not treated. The larviciding intervention was most effective during dry seasons and had synergistic effects with other protective measures such as use of insecticide-treated bed nets and house proofing (i.e., complete ceiling or window screens). A large-scale community-based larviciding intervention significantly reduced the prevalence of malaria infection in urban Dar es Salaam

    Evaluating putative repellent 'push' and attractive 'pull' components for manipulating the odour orientation of host-seeking malaria vectors in the peri-domestic space

    Get PDF
    BACKGROUND: Novel malaria vector control approaches aim to combine tools for maximum protection. This study aimed to evaluate novel and re-evaluate existing putative repellent 'push' and attractive 'pull' components for manipulating the odour orientation of malaria vectors in the peri-domestic space. METHODS: Anopheles arabiensis outdoor human landing catches and trap comparisons were implemented in large semi-field systems to (i) test the efficacy of Citriodiol((R)) or transfluthrin-treated fabric strips positioned in house eave gaps as push components for preventing bites; (ii) understand the efficacy of MB5-baited Suna-traps in attracting vectors in the presence of a human being; (iii) assess 2-butanone as a CO2 replacement for trapping; (iv) determine the protection provided by a full push-pull set up. The air concentrations of the chemical constituents of the push-pull set-up were quantified. RESULTS: Microencapsulated Citriodiol((R)) eave strips did not provide outdoor protection against host-seeking An. arabiensis. Transfluthrin-treated strips reduced the odds of a mosquito landing on the human volunteer (OR 0.17; 95% CI 0.12-0.23). This impact was lower (OR 0.59; 95% CI 0.52-0.66) during the push-pull experiment, which was associated with low nighttime temperatures likely affecting the transfluthrin vaporisation. The MB5-baited Suna trap supplemented with CO2 attracted only a third of the released mosquitoes in the absence of a human being; however, with a human volunteer in the same system, the trap caught < 1% of all released mosquitoes. The volunteer consistently attracted over two-thirds of all mosquitoes released. This was the case in the absence ('pull' only) and in the presence of a spatial repellent ('push-pull'), indicating that in its current configuration the tested 'pull' does not provide a valuable addition to a spatial repellent. The chemical 2-butanone was ineffective in replacing CO2. Transfluthrin was detectable in the air space but with a strong linear reduction in concentrations over 5 m from release. The MB5 constituent chemicals were only irregularly detected, potentially suggesting insufficient release and concentration in the air for attraction. CONCLUSION: This step-by-step evaluation of the selected 'push' and 'pull' components led to a better understanding of their ability to affect host-seeking behaviours of the malaria vector An. arabiensis in the peri-domestic space and helps to gauge the impact such tools would have when used in the field for monitoring or control

    Productivity of Malaria Vectors from Different Habitat Types in the Western Kenya Highlands

    Get PDF
    BACKGROUND: Mosquito Larval Source Management (LSM) could be a valuable additional tool for integrated malaria vector control especially in areas with focal transmission like the highlands of western Kenya if it were not for the need to target all potential habitats at frequent intervals. The ability to determine the productivity of malaria vectors from identified habitats might be used to target LSM only at productive ones. METHODS: Each aquatic habitat within three highland sites in western Kenya was classified as natural swamp, cultivated swamp, river fringe, puddle, open drain or burrow pit. Three habitats of each type were selected in each site in order to study the weekly productivity of adult malaria vectors from February to May 2009 using a sweep-net and their habitat characteristics recorded. RESULTS: All surveyed habitat types produced adult malaria vectors. Mean adult productivity of Anopheles gambiae sensu lato in puddles (1.8/m(2)) was 11-900 times higher than in the other habitat types. However, puddles were the most unstable habitats having water at 43% of all sampling occasions and accounted for 5% of all habitats mapped in the study areas whereas open drains accounted for 72%. Densities of anopheline late instars larvae significantly increased with the presence of a biofilm but decreased with increasing surface area or when water was flowing. Taking stability and frequency of the habitat into account, puddles were still the most productive habitat types for malaria vectors but closely followed by open drains. CONCLUSION: Even though productivity of An. gambiae s.l. was greatest in small and unstable habitats, estimation of their overall productivity in an area needs to consider the more stable habitats over time and their surface extension. Therefore, targeting only the highly productive habitats is unlikely to provide sufficient reduction in malaria vector densities

    Identifying the most productive breeding sites for malaria mosquitoes in The Gambia

    Get PDF
    BACKGROUND: Ideally larval control activities should be targeted at sites that generate the most adult vectors, thereby reducing operational costs. Despite the plethora of potential mosquito breeding sites found in the floodplains of the Gambia River, about 150 km from its mouth, during the rainy season, only a small proportion are colonized by anophelines on any day. This study aimed to determine the characteristics of larval habitats most frequently and most densely populated by anopheline larvae and to estimate the numbers of adults produced in different habitats. METHODS: A case-control design was used to identify characteristics of sites with or without mosquitoes. Sites were surveyed for their physical water properties and invertebrate fauna. The characteristics of 83 sites with anopheline larvae (cases) and 75 sites without (controls) were collected between June and November 2005. Weekly adult productivity was estimated with emergence traps in water-bodies commonly containing larvae. RESULTS: The presence of anopheline larvae was associated with high invertebrate diversity (Odds Ratio, OR 11.69, 95% CI 5.61-24.34, p < 0.001), the presence of emergent vegetation (OR 2.83, 95% CI 1.35-5.95, p = 0.006), and algae (at borderline significance; OR 1.87, 95% CI 0.96-3.618, p = 0.065). The density of larvae was reduced in sites that were larger than 100 m in perimeter (OR 0.151; 95% CI 0.060-0.381, p < 0.001), where water was tidal (OR 0.232; 95% CI 0.101-0.533, p = 0.001), vegetation shaded over 25% of the habitat (OR 0.352; 95% CI 0.136-0.911, p = 0.031) and water conductivity was above 2,000 muS/cm (OR 0.458; 95% CI 0.220-0.990, p = 0.048). Pools produced the highest numbers of Anopheles gambiae adults compared with rice fields, floodwater areas close to the edge of the floodplain or close to the river, and stream fringes. Pools were characterized by high water temperature and turbidity, low conductivity, increased presence of algae, and absence of tidal water. CONCLUSION: There are few breeding sites that produce a high number of adult vectors in the middle reaches of the river in The Gambia, whereas those with low productivity are larger in area and can be found throughout the rainy season. Even though risk factors could be identified for the presence and density of larvae and productivity of habitats, the results indicate that anti-larval interventions in this area of The Gambia cannot be targeted in space or time during the rainy season
    corecore